Черемухин Алексей Михайлович Часть 2

При разработке конструкции самолета “70” в ОКБ под руководством Черемухина впервые начали заниматься решением проблем создания герметичного фюзеляжа большого диаметра с учетом воздействия на фюзеляж, как внешних нагрузок, так и нагрузок от наддува. При создании “75” были решены задачи создания силового пола (под нагрузку от тяжелых гусеничных и колесных машин) и большого выреза в герметичном фюзеляже под грузовой люк. На начальном этапе проектирования гибкого крыла самолета “85” впервые изучались вопросы динамического нагружения самолета в полете и при грубой посадке. Исследования показали, что при учете деформации крыла из-за возникающего перераспределения нагрузок расчетные изгибающие моменты уменьшаются, что позволяет снизить его вес.
Самолет “85” был одним из первых отечественных самолетов, в расчете которого учитывалось влияние деформации крыла на расчетную нагрузку. В практике ОКБ впервые для снижения изгибающего момента Черемухин предложил изменить порядок выработки топлива в полете таким образом, чтобы обеспечивалась максимальная разгрузка крыла. “Можно сказать, – вспоминает С.Д.Агавельян, – что машины “80” и “85>> были спроектированы по “нормам Черемухина”. Когда эти самолеты были готовы, ЦАГИ все еще не выпускал новых Норм прочности, долго не давал разрешения на их первые полеты. Нормы прочности широко обсуждались в ЦАГИ. При создании Норм прочности продолжалось тесное сотрудничество Алексея Михайловича с ведущими специалистами ЦАГИ А.И.Макаревским, Т.А.Французом, Н.Н.Корчемкиным и другими.

Как правило, Андрей Николаевич в этих обсуждениях участия не принимал – главным представителем от ОКБ на них был Черемухин. При решении спорных вопросов он целиком опирался на результаты уже проведенных испытаний конструкций, спроектированных по американским нормам. Это позволяло ему твердо отстаивать свои позиции. Несмотря на убедительность представленных Черемухиным результатов испытаний, большинство участников обсуждения были против того, чтобы пересматривать Нормы прочности. Лишь ко времени создания Ту-16 новые Нормы были разработаны, в них в значительной степени были учтены предложения Черемухина”. Решением проблем нагружения упругого крыла Черемухин начал заниматься еще тогда, когда делали Ту-4. Один из его учеников, Ю.Е.Ильенко, вспоминает: “…Еще в то время, когда в ОКБ Туполева строили Ту-4, Алексей Михайлович в МАИ предложил мне, студенту, заняться задачей динамического нагружения упругого крыла… Позже, попав на преддипломную практику в ЦАГИ, в сектор А.И.Макаревского, я увидел, что Н.Н.Корчемкин и Т.Г.Васильева решали ту же задачу по заданию ОКБ-156, т. е. по заданию Черемухина.
Результат выполненного мной тогда расчета упругого крыла с учетом динамического нагружения свидетельствовал, что нагрузки на крыло Ту-85 получались примерно на 17 % ниже, чем при расчете по нормам (без учета упругости крыла) … Об этих результатах я рассказал Алексею Михайловичу, чем его весьма порадовал.

Особый интерес к проблеме нагружения упругог крыла, – продолжает Ю.Е.Ильенко, – возник в связи с инцидентом, произошедшим при подготовке к параду в Тушино, когда самолет Ту-82, пролетая на малой высоте с большой скоростью, едва не разрушился…”

При обсуждении этого случая, – вспоминал С.Д.Агавельян, – в ЛИИ на заседании высокой комиссии высказывались разные мнения о причинах аварии. Алексей Михайлович высказал предположение, что причина аварии – попеременное действие воздушных потоков на небольшой высоте полета в зависимости от рельефа местности поле – река – лес), начинающих при больших скоростях полета взаимодействовать с собственными частотами колебания крыла. Он сразу же дал и название явлению – “циклическая болтанка”. Нагружение от “циклической болтанки” довольно долго оставалось ненормируемым, поскольку расчетчики не располагали необходимыми данными статистики по такому нагружению в эксплуатации. Работа по сбору данных, количественной оценке и статистике случаев “циклической болтанки” была поручена Московскому филиалу ЦАГИ и выполнялась под руководством его начальника В.Н.Архангельского.

Впоследствии в Нормы прочности расчетный случай вошел с тем названием, который ему дал А.М.Черемухин. По его же предложению было принято решение установить на всех гражданских самолетах самописцы, регистрирующие перегрузки. Расчеты внешних нагрузок с учетом упругости, несмотря на их трудоемкость, успешно внедрялись в ОКБ. Трудоемкость расчетов главным образом определялась тем, что считать приходилось на конторских счетах, с помощью логарифмических линеек и в лучшем случае на арифмометрах. Неизбежны были ошибки, многократные проверки, повторные расчеты.
В середине 50-х годов в отделе динамической прочности ОКБ В.М.Мясищева инженером Ю.Е.Ильенко на электронном линейном интеграторе (ЭЛИ) была отработана методика расчета динамики нагружения упругого самолета. Ознакомиться с результатами этой работы и вычислительной техникой ОКБ Мясищева Алексей Михайлович пригласил А.Н.Туполева. Поездка к Мясищеву Андрея Николаевича вместе с Черемухиным состоялась летом 1953 г. После этой поездки было принято решение приобрести такую же вычислительную технику и начать работы по ее освоению. Алексей Михайлович возглавил эту работу. Когда первая ЭЛИ-12 была приобретена, по его инициативе ее освоение было поручено Б.Н.Соколову, который впоследствии стал организатором и руководителем подразделения динамических расчетов и вычислительной техники. О том, как все начиналось, Борис Николаевич вспоминает : Вскоре после защиты диплома меня неожиданно вызвал к себе Алексей Михайлович для разговора один на один. Общий смысл разговора сводился к следующему: конструкторское ОКБ Владимира Михайловича Мясищева (ОКБ-23) работает над созданием дальнего стратегического бомбардировщика с крылом большого удлинения. Самолет аналогичного назначения проектируют, уже строят и в нашем КБ. И наконец, четкая цель и смысл разговора:
– Для проведения этих работ (а нужно решать системы дифференциальных уравнений до 12-го порядка) мясищевцы приобрели специальную вычислительную машину. Опыт ее использования и методика работы освоены этим ОКБ и ЦАГИ. Узаконены требования Норм прочности по проблеме упругого крыла и динамики. Необходимо развернуть такие же расчетные работы у нас в ОКБ для Ту-16 и Ту-95. Мы с Андреем Николаевичем решили поручить это дело тебе, молодое дело надо делать молодым, Николай Андреевич (Н.А.Соколов – отец Б.Н.Соколова руководил бригадой вибрации. – Авт.) занимался близкими задачами, у тебя, кроме МАИ, два вечерних курса мехмата МГУ, так что продолжай. Пару дней подумай и заходи ко мне. И совершенно неожиданно, с хитринкой в умных глазах:
– А машину эту мы уже купили. Так в середине 1953 г. в ОКБ-156 начался этап компьютеризации расчетных и экспериментальных работ, так определилась моя дальнейшая инженерная судьба, так Алексей Михайлович начал и возглавил очередное новое дело, значимость которого для ОКБ и авиации в целом сегодня трудно переоценить.

Первые контакты с Алексеем Михайловичем после установки машины и получения первых “штатных”, тестовых результатов убедительно доказали мне, что его цепкий инженерный ум, широкое видение будущего вычислительной техники в ОКБ намного обогнали время. Он быстро и отчетливо осознал своим прагматическим умом, будущие возможности этой техники для ОКБ, безоговорочно, с первых шагов, принял ее как мощный инструмент для решения сложных расчетных задач.
Освоение простейшей, по нынешним понятиям, моделирующей вычислительной машины ЭЛИ-12 – 1 для наших авиационных задач, даже с учетом методической помощи ЦАГИ и ОКБ-23, шло не просто, а методом проб и ошибок. Алексей Михайлович, прекрасный талантливый популяризатор, умевший объяснить самые сложные явления, с первых шагов поставил передо мной задачу, помимо освоения вычислительной техники для динамических задач прочности, делать широкую рекламу и популяризировать возможности этой техники для решения наиболее сложных расчетных задач в различных бригадах ОКБ, а также обеспечить подготовку и переподготовку людей в этих подразделениях для такой работы. – Особенно молодых, с современным образованием и склонностями, – подчеркнул он”.

Современных прочностов, – вспоминает ученик Черемухина, ведущий инженер В.Б.Лоим, – удивляет, как малочисленный в прошлом состав отдела прочности в ОКБ Туполева, занимавшийся тяжелой авиацией, очень мало пополнившийся специалистами, справлялся с проектированием таких больших самолетов, как “70”, “80”, “85” – сверхкрепостей и первых реактивных самолетов “77”, Ту-14, “82”. Срок постройки каждого из этих самолетов составлял всего 1 – 3 года, а всех вместе – 6 лет.
Работал отдел очень напряженно, его малочисленного состава было достаточно потому, что Алексей Михайлович перенес большую часть детальных расчетов непосредственно в конструкторские бригады. Работая с конструкторами практически ежедневно, Алексей Михайлович передавал им свой опыт создания и применения приближенных методов расчета. Благодаря четкой организации Черемухиным процесса подготовки и проведения испытаний образцов, конструкторы и расчетчики-прочнисты своевременно получали необходимую информацию для решения вопросов по прочности конструкции. Большую помощь оказывало и производство. Заказ с принятым тогда для опытных работ индексом “О” выполнялся как срочный, и заказываемые бригадами образцы и агрегаты изготавливались вне очереди. Окончательное заключение о работоспособности конструкции, подтверждение правильности или ошибочности расчетов давали статические испытания натурной конструкции самолета.
Программы статических испытаний строились Черемухиным так, чтобы изучить изменения напряженного состояния реальной конструкции при возможно большем числе вариантов внешних нагрузок прежде, чем конструкция будет разрушена.

Когда испытания проходили в ЦАГИ, программы испытаний создавались в творческом содружестве с цаговцами, начальником отдела статических испытаний М.П.Наумовым, ведущим инженером А.А.Соловьевой и другими и, наконец, обсуждались и согласовывались с руководством ЦАГИ. Алексей Михайлович придавал огромное значение проведению статических испытаний целого самолета, так как эти испытания позволяли последовательно, по мере нагружения, оценить фактическое напряженное состояние конструкции с учетом стеснений, статических неопределимостей и влияния взаимных деформаций элементов. Переходя от одной точки наблюдения к другой в процессе испытаний, Алексей Михайлович внимательно наблюдал за изменениями напряжений и деформаций конструкции.
Когда нагрузка подходила к расчетной величине, все его внимание было обращено на тот участок, где, по его мнению, разрушение было наиболее вероятно. Приостанавливая ход нагружения, Черемухин начинал осматривать конструкцию изнутри. А.П.Коротков вспоминал: … Идут статические испытания очередного “Ту”, в ЦАГИ довели нагрузку выше 60 % от расчетной. Где-то временами слышится срыв заклепок, внутри фюзеляжа слышен треск. Нагрузка держится. Можно грузить дальше.
Однако Алексей Михайлович дает команду: – Снизить нагрузку до 40 %.Снизили. Все спокойно. Алексей Михайлович приглашает: – Кто полезет со мной в фюзеляж для осмотра поломки?
Кто-то нехотя соглашается. Нехотя, потому что можно испачкать костюм, порвать его, самому ушибиться, да и фюзеляж-то все-таки под нагрузкой. Вдвоем, втроем по стремянке и неудобным трапам с лампочкой “времянкой” проникаем вовнутрь. При осмотре повреждения задача Черемухина – определить физическую картину происшествия и значимость этой поломки. Обычно бывает, что ломается деталь, не участвующая в общей прочности самолета, выполняющая второстепенную роль (закрепления несилового оборудования, пола, внутренней обшивки и прочего). Осмотр закончен. Если все в порядке, следует команда: – Можно грузить дальше”.

При осмотре разрушений далеко не всегда было очевидно, с какого элемента, фактически определившего прочность всей конструкции, началось разрушение. Черемухину удавалось найти этот элемент, требующий усиления, благодаря тщательному анализу результатов разрушения и его глубокому пониманию работы конструкции. При проведении испытаний задача осложнялась тем, что основным инструментом для измерений были механические тензометры. При приближении к расчетной нагрузке тензометры во избежание их разрушений приходилось снимать, и эксперимент проводили практически “вслепую”. Электрическая тензометрия, обеспечивающая возможность проводить измерения вплоть до момента разрушения, только начинала внедряться.
Несмотря на огромный объем статических испытаний, иногда в летных испытаниях обнаруживалось что-то “неожиданное”.

– Так, например, – вспоминает ведущий инженер И.А.Старков, – во время летных испытаний самолета “82” на максимальную скорость происходило разрушение обшивки в зоне перехода от двигательных установок к носку крыла. Алексей Михайлович, проанализировав характер разрушения, дал рекомендацию, которой никто не ожидал, – он предложил сделать разрез в зоне разрушения. Во время одной из доработок на летной машине он предложил провести сравнительные испытания, которые подтвердили правильность его рекомендации. Повреждения обшивки прекратились.
После второй мировой войны реактивная и турбовинтовая авиация, имея значительные преимущества в скорости и высоте полета, начала энергично вытеснять самолеты с поршневыми двигателями, сначала в военной авиации, а затем и в гражданской, оставив им место в малой и спортивной авиации.
В первом квартале 1948 г. в ОКБ Туполева были начаты исследования по тяжелому реактивному самолету со стреловидным крылом, обеспечивающим возможность достижения околозвуковых скоростей. Начиная с этапа предварительного проектирования, Алексей Михайлович участвовал в исследованиях по выбору удлинения крыла в пределах от 6 до 11. Расчет крыла, особенно его корневой части, был одной из главных проблем, которую предстояло решать. Сложность задачи обуславливалась тем, что конструктивно один лонжерон в корневой части был длиннее другого, что приводило к увеличению нагрузки на короткий лонжерон вследствие меньшей его гибкости. В корневой части возникало сложное распределение силовых потоков, в том числе из-за стесненности кручения.
Как всегда, первое наглядное представление, на сей раз о силовой работе конструкции стреловидного крыла в корневой части, дала модель из ватмана, склеенная Черемухиным дома. Влияние жесткости лонжеронов и стыковой нервюры, места приложения нагрузки – все это удалось оценить на модели, которой жесткость элементов варьировалась толщиной бумаги, нагружение осуществлялось с помощью безмена на 1 кг, сделанного им еще в Омске во время эвакуации. После бумажной модели было сделано несколько моделей из тонкого целлулоида в сочетании с деревом, имитирующим пояса лонжеронов и нервюр, стрингера и т. д. На следующем этапе были сделаны металлические (дюралевые) модели плоских кессонов с наружными силовыми элементами для всестороннего исследования их напряженного состояния в лаборатории статических испытаний.

“К этой работе, – вспоминали ученики Черемухина, – Алексей Михайлович привлек известных профессоров: С.Н.Кана, И.А.Свердлова – своих бывших учеников, В.Ф.Киселева и других сотрудников ЦАГИ, занимавшихся теорией прочности стреловидных крыльев”. Под руководством Черемухина по результатам испытаний моделей была разработана инженерная методика расчета стреловидного крыла большого удлинения и стреловидного оперения. Разработанная методика расчета применялась в расчетной практике ОКБ Туполева, начиная с самолета “82” и до момента внедрения в практику расчета конструкции методом конечного элемента с применением ЭВМ”. (И.Б.Гинко, Н.И.Зубов, Ф.К.Калиновский, М.М.Колобашкин, Л.П.Коротков, В. Б. Лоим, И.Н.Скородумов, И.П.Сухарев, В.Н.Шитов. Ученый, конструктор, воспитатель. – В кн: 60 лет ОКВ Туполева, Москва, 1982 г.).
Таким образом, к началу рабочего проектирования первого стреловидного оперения (самолет “73”, 1946 г.) и первого стреловидного крыла (самолет “82”, 1948 г.) Черемухин и его бригада имели качественное и количественное представление о силовой работе стреловидных кессонных конструкций.
Благодаря принятому А. Н. Туполевым решению о последовательном освоении техники, прочнисты успели разработать и расчетные методики для каждого из проектируемых самолетов. При проектировании самолета “77” (Ту-12, 1946 – 1947 гг.), являющегося одной из модификаций Ту-2 (с двумя реактивными двигателями “НИН”), были разработаны расчетные методы учета нагрева конструкции от выхлопных труб и от газовых струй.

При проектировании следующего самолета “73”, в серии Ту-14 (1947 г.) были разработаны методики расчета герметизированной кабины и стреловидного горизонтального оперения. К началу проектирования самолета “82” (1948 г.), первого бомбардировщика ОКБ Туполева со стреловидным крылом 35′ и стреловидным (40′) горизонтальным оперением, была подготовлена методика расчета стреловидного крыла.

В 1949 г. на смену Ту-4 была начата разработка проекта тяжелого дальнего реактивного бомбардировщика со стреловидным крылом (35′) с дальностью полета 5000 км. Особенность выбранной компоновки состояла в том, что двигатели, подвешенные на фюзеляж в месте выреза под бомбовый отсек, располагались за корневой частью крыла. Канал воздухозаборника, проходивший через кессон консоли крыла, прорезал стенки переднего и заднего лонжеронов вблизи зоны крепления консоли к центроплану.
Такая компоновка требовала от конструкторов и прочнистов решения новых для них задач, таких как компенсация выреза в стенках лонжеронов кессонного крыла, крепление центроплана и двигателей к фюзеляжу с большим вырезом с учетом всех взаимных деформаций и ряда других задач.
Для решения первой задачи, в отличие от уже известных конструкций, требовалось обеспечить связь кольцевых рам, заменяющих вырезанные стенки лонжеронов, с панелями кессонного крыла. Алексей Михайлович предложил сделать эти рамы состоящими из четырех частей, соединенных между собой на срезных болтах. Одной из 3-х проблем, было соединение рам с полками и стенками лонжеронов, с верхней и нижней панелями крыла.  Для проверки расчетов были сделаны и испытаны образцы таких сборных рам.

О решении других проблем снова вспоминают ученики Алексея Михайловича: “Еще в 50-е годы Черемухин предложил скорректированную и проверенную большим объемом натурных испытаний самолетов методику расчета стыков крыла со шпангоутами. Эта методика широко используется в ОКБ Туполева и в настоящее время (1982 г. – Авт.).

Помимо уже названных решений, Алексей Михайлович принимал непосредственное участие в разработке инженерных расчетов бимсов, окантовок, больших вырезов под двери, грузовые люки, шассийные ниши, герметических кабин и других конструктивных элементов”.
Для решения комплекса проблем: соединения крыла с центропланом, крепления двигателя и обеспечения прочности фюзеляжа с большим вырезом – он широко применял метод моделирования. Начиная с бумажных моделей, которые он с успехом делал дома, он продолжал дальнейшее изучение проблем на схематизированных металлических моделях. На испытаниях первого опытного самолета были продемонстрированы его прекрасные летные данные. Однако с целью снижения веса при разработке второго самолета и особенно при подготовке чертежей к производству серийного самолета Ту-16 предстояло внести ряд существенных изменений в конструкцию. Одно из них – замена сборной кольцевой рамы на цельноштампованную. Процессу отработки технологии штамповки Алексей Михайлович уделял особое внимание и, как оказалось, не случайно. Как вспоминает И.Л.Головин, в то время главный металлург завода, по рекомендации материаловедов-виамовцев после штамповки требовалось искусственное старение рамы. Этот процесс приводил к тому, что сплав становился хрупким.
При статиспытаниях по программе Черемухина обнаружилось, что прочность рам недостаточна. Решили снять искусственное старение, что было с позиций авторов сплава вообще-то недопустимо. Однако рамы без искусственного старения перестали трещать и выдержали испытания. Несмотря на то что технология отступала от рекомендованной институтом, Черемухин подписал документ об установке на самолет рам, не прошедших искусственного старения.

С целью снижения веса конструкции планера перед металлургами была поставлена задача найти более прочный, чем Д16, алюминиевый сплав. ВИАМ предложил сплав В-95, прочнее Д-16 на 20 %.
Разброс данных по прочности больший, чем у Д-16, при уменьшенной пластичности и пониженных усталостных характеристиках нового сплава настораживал прочнистов ЦАГИ и ОКБ. “При обсуждении свойств сплава его авторы – специалисты ВИАМа, – вспоминал И.Л.Головин, – часто приводили “средние данные”, на что Алексей Михайлович замечал: – Средняя температура у больных в больницах нормальная, но в ней есть люди живые и мертвые. Так и свойства металла средние – хорошие, а минимальные – никуда не годные”.

С достаточной мерой осторожности Алексей Михайлович предложил использовать новый сплав в сжатых зонах силовой конструкции (верхние панели крыла, стрингерный набор фюзеляжа). В нижних панелях крыла он предложил сделать из нового сплава только обшивку в основных корневых зонах крыла на 1/2 размаха, оставив Д-16 в концевых зонах. Для подтверждения предложенных решений он организовал серию испытаний образцов панелей, заклепочных швов и т. п. По словам С.Д.Агавельяна, … как правило, решая вопросы создания самолетов, Андрей Николаевич работал с Алексеем Михайловичем заодно. Бывали, однако, случаи, когда их взгляды не совпадали. Об одном, относящемся ко времени летной эксплуатации Ту-16, вспоминали и С.Д.Агавельян, и Б.Н.Соколов: “Несколько случаев разрушения фюзеляжа Ту-16, по мнению А.Н.Туполева, были связаны лишь с ошибками летчиков при посадке самолета. Алексей Михайлович считал, что причина разрушений в том, что при любой грубой посадке с большой вертикальной скоростью происходит динамическое нагружение самолета, избежать разрушения от которого нужно усилением конструкции. Зная, что Андрей Николаевич против такой работы, Черемухин все же дал задание выпустить чертежи”.
Задачу определения динамических нагрузок он поручил Б. Н. Соколову. Проведенные им расчетно-экспериментальные исследования доказали, что возникающие при посадке упругого самолета дополнительные динамические нагрузки в 1,5 – 2 раза превышают нагрузки, предусмотренные нормами, по которым проектировался самолет.

Работа завершена была тем, что “исследования динамических нагрузок на самолет при посадке стали штатным требованием Норм прочности”. Так еще одно уточнение Норм состоялось благодаря исследованиям, организованным Черемухиным.

В 1949 г. в ОКБ Туполева было начато проектирование межконтинентального скоростного бомбардировщика со стреловидным крылом 35′ и удлинением крыла порядка 9. Еще до начала выбора компоновки внимание и Черемухина, и Туполева было сосредоточено на исследовании возможной силовой схемы конструкции с оптимальным размещением двигателей. После двухлетней работы ОКБ был создан проект самолета с четырьмя турбовинтовыми двигателями НК-12, расположенными на крыле. Самолет этот получил наименование Ту-95.

Как вспоминает В.А.Федотов, в то время один из заместителей В.М.Мясищева, коллективы А.Н.Туполева и В.М.Мясищева параллельно работали над созданием тяжелых стратегических бомбардировщиков. Было много общих проблем, в том числе и в области прочности. Все новшества вводились под нажимом прочнистов, возглавляемых А.М.Черемухиным в ОКБ Туполева и Львом Ивановичем Балабухом в ОКБ Мясищева. Общими усилиями добивались многих нововведений в Нормы прочности. Нам тогда, продолжает В.А.Федотов, очень помогли работы Черемухина, организовавшего проектирование всевозможных образцов конструкции, результаты испытаний которых убеждали в необходимости изменения Норм. Предложенный Черемухиным и примененный еще на машине “85” метод расчета внешних нагрузок с учетом деформации крыла был им использован при проектировании Ту-95 с учетом особенности деформации стреловидного крыла. В соответствии с этим расчетом, учитывающим, что перераспределение в полете аэродинамических нагрузок с концевых участков к корню крыла приводит к снижению изгибающих моментов, обеспечивалась возможность облегчения конструкции крыла.

Совместные с ЦАГИ исследования в скоростных аэродинамических трубах моделей с деформированным под расчетные нагрузки крылом, а впоследствии и летные испытания подтвердили правильность предложенного метода расчета внешних нагрузок. С целью ускорения выпуска машин впервые в практике ОКБ было принято решение одновременно с проектированием начать работу по подготовке серийного производства. На серийном заводе изготавливалась оснастка, и подготавливались линии сборки. Это решение существенно повышало ответственность прочнистов за все конструктивные решения, так как следствием любых исправлений конструкции стали бы переделка оснастки и доработка самолета уже на сборочных линиях серийного завода или в эксплуатирующей части.
Возможность работы без ошибок была уже подготовлена в отделе прочности всем накопленным в оперативном проведении расчетов и экспериментальных работ опытом, получению которого так много уделял внимания А.М.Черемухин.

Самолет Ту-95 имел много модификаций и выпускался промышленностью до самого последнего времени. Некоторые модификации потребовали существенной доработки силовой конструкции.
Одним из примеров такой работы была модификация в 1956 – 1957 гг. самолета-бомбардировщика под вариант ракетоносца – Ту-95К. Доработка состояла в необходимости подвесить ракету весом 12 тонн вместо девятитонной бомбы. Предстояло увеличить размер грузового люка и одновременно усилить узлы подвески, чтобы воспринять вес ракеты с расчетной перегрузкой. Кроме того, надо было “спрятать” в фюзеляже оперение ракеты, что также потребовало серьезных конструктивных изменений хвостовой части фюзеляжа. Так возникла необычная схема, не встречавшаяся нигде ранее.
Поиски решения, как всегда, не давали Черемухину покоя и дома. “Однажды в один из приходов к Алексею Михайловичу, – вспоминал заместитель главного конструктора ОКБ Туполева В.И.Нижегородов, – я узнал от него, что дома он сделал модель средней части фюзеляжа. На его рабочем столе лежала готовая модель в 1:50 из ватмана. Диаметр фюзеляжа был порядка 150 мм. В модели уже был воспроизведен новый вариант доработки. – Мылся в ванне, – сказал Алексей Михайлович, – и вдруг пришла в голову идея конструкции. Вылез, достал ватман, клей … и модель готова. На этой модели прояснилось, как выглядит нагружение фюзеляжа новой конструктивной схемы.
Позже он предложил использовать для моделей дюралевые цилиндры, оставшиеся от старых экспериментов в лаборатории статических испытаний, выполнив необходимые доработки. Вспомнили, что для таких испытаний подойдут сдвигомеры. Из испытаний этих моделей получили представление о деформации и напряженном состоянии конструкции при такой схеме фюзеляжа. С учетом этих результатов доработали старый фюзеляж Ту-95 и провели сначала его статические испытания, потом создали из него натурный стенд. На нем впоследствии провели испытания по сбросу двадцатитонной подвески”.
В числе многих модификаций Ту-95 была проведена в 1957 г. работа по созданию носителя под подвеску весом 40 тонн. Еще одной известной модификацией Ту-95, которой занимался Черемухин, была доработка под 28-тонную водородную бомбу – “Ивана”. Этот вариант Ту-95 был сделан в одном экземпляре и после испытаний на нем “Ивана” использовался как учебный, и, наконец, на нем осуществлялись перевозки – на внешней подвеске – агрегатов Ту-144 в г. Новосибирск для проведения ресурсных испытаний в Сибирском научно-исследовательском институте авиации (СибНИА).
За работу по модификации Ту-95 по разнарядке ЦК КПСС предусматривалось присвоение звания Героя Социалистического Труда нескольким сотрудникам ОКБ и завода. В числе представленных к званию был и Черемухин. Однако ЦК дал указание, чтобы в списке было двое рабочих. А.Н.Туполев должен был решить, кого заменить. Посоветовавшись с Алексеем Михайловичем, он получил согласие на замену его кандидатуры. В результате “за выдающиеся заслуги” Черемухин получил другую награду – орден Ленина.

В те же годы, когда проектировался самолет Ту-95, в ОКБ были начаты исследования по созданию тяжелых самолетов с возможным на боевом режиме полетом со сверхзвуковой скоростью. Изучая возможные силовые схемы треугольного и стреловидного крыла, Алексей Михайлович и прочнисты ЦАГИ пришли к выводу, что треугольное крыло конструктивно проще, а также легче, чем стреловидное. Однако аэродинамики ЦАГИ рекомендовали для машин “98” и “105” крылья 55′ стреловидности. Прочнистам вместе с конструкторами в связи с этим предстояло создать конструкцию такого крыла. В отличие от конструкции крыльев Ту-16 и Ту-95 относительная толщина крыла этих самолетов была в два раза меньше, соответственно панели крыла кессонной конструкции были более нагруженными, что приводило к необходимости использования толстых (8 – 10 мм) обшивок. Первоначально предполагалось традиционное решение конструкции панелей кессона крыла.

С целью выбора наиболее рациональной конструкции Черемухин организовал проектирование опытных панелей, в которых варьировалась толщина силовых обшивок, размеры стрингеров, варианты их крепления с обшивкой и т. д.

Результаты проведенных совместно с ЦАГИ испытаний панелей свидетельствовали, что ни один из вариантов не удовлетворяет ни по технологичности, ни по весовым характеристикам и, следовательно, не может быть использован в конструкции крыла. Наиболее рациональной представлялась цельнопрессованная конструкция панелей. Технологи предложили делать такую панель в два этапа: сначала прессовать трубу, с расположенными снаружи стрингерами, а затем разворачивать эту ребристую трубу в панель. Несмотря на сложность процесса изготовления цельнопрессованной панели, эту конструкцию приняли исходя из того, что она легче и технологичнее клепаной.

Страницы: 1 2 3 4 5 6 7

Комментирование закрыто, но вы можите поставить trackback со своего сайта.

Комментарии закрыты.